

Vineyard Cover Crops and Tillage Practices

Dr. Kerri Steenwerth

USDA-ARS

Today's Roadmap

- Reducing Soil Erosion, Runoff, and Dust
- Reducing Greenhouse Gas Production by Altering Tillage Practices
- Soil Biology and Organic Matter
- Weed and Vine Management

Form and Function

Erosion and Runoff

Trios 102 or Rye

Cultivation

- cover crops gave 45% and 80% reduction in runoff
- dependent upon cover crop type
- nutrient concentrations of runoff were the same among treatments
- *MORE* total nutrients were lost from cultivated soils.
- slope was only 1-2%
- Only 7-9" rain per year!

Larry Bettiga, Michael Kahn, Richard Smith, UCCE Farm Advisors

Smith et al. 2008, California Agriculture

Dust Reduction

- Provide improvements in air quality
- Reductions in dust generation related to reductions in mite pressure
- Potential improvements in predatory mite habitat
- Adopt no-till or reduced tillage practices

Revisiting the Roadmap

- Reducing Soil Erosion, Runoff, and Dust
- Reducing Greenhouse Gas Production by Altering Tillage Practices

- Viticultural activities that produce GHGs
- AB 32 requires monitoring of CO₂ emissions
- N₂O emissions not required to be monitored yet

Fossil Fuel Combustion

- One of largest components of GHG emissions
- Best understood
- Most easily controlled and measured by growers
- More fuel = more GHG emissions
 - gal. diesel = 12 kg CO_{2e}
 - gal. gasoline = 10.5 kg CO_{2e}
- Management
 - Biofuels can lessen impact
 - Onsite energy generation
 - Minimize fuel usage
- Research needs

Vineyard floor management

- **Conventional tillage** (<30% of crop residues left on the surface, multiple passes)
 - less carbon enters soil organic matter
 - greater production of CO₂
 - some N₂O production
 - greatest requirement for fossil fuels
- **Conservation tillage** (>30% of crop residues left on surface)
 - more carbon enters soil organic matter
 - less CO₂ produced due to soil management
 - less fuel required
- **No-Till systems** (No disturbance of the soil surface)
 - most carbon enters soil organic matter
 - least amount of fuel required
 - cover crops may decrease need for synthetic fertilizers
 - BUT may result in higher N₂O production
- Research needs

Revisiting the Roadmap

- Reducing Soil Erosion, Runoff and Dust
- Reducing Greenhouse Gas Production by Altering Tillage Practices

• Soil Biology and Organic Matter

Cover crops vs. Cultivation

Trios 102 or Rye

Cultivation

Cover crops improve soil carbon content

Soil Organic Matter

'Trios', 10.98 ± 0.30 mg C kg⁻¹ 'Rye', 9.45 ± 0.34 mg C kg⁻¹ 'Cultivation', 7.18 ± 0.18 mg C kg⁻¹

Steenwerth and Belina, 2008

Cover crops improve soil N dynamics

Potential Nitrification

SAME TREND: Microbial Biomass N and Potential N Mineralization

In-row cover crops?

Can cover crops reduce nematodes?

	Bacteria feeders	Fungal feeders	Plant parasitic	Omnivorous		Carnivorous
Veraison:						
under vine	15%	9%	74%	99% ring		<1%
inter-row Harvest:	52%	24%	19%	91% stunt		0
under vine	9%	13%	77%	96% ring		<1%
inter-row	38%	41%	14%	91% stunt		1%
under vine	5%	9%	85%	97% ring		0.4%
inter-row	48%	36%	13%	90% stunt		0%
S.R. Parker, USDA/ARS						

Revisiting the Roadmap

- Soil Erosion, Runoff and Dust Reduction
- Reducing Greenhouse Gas Production by Altering Tillage Practices
- Soil Biology and Organic Matter

• Weed and Vine Management

Cover crops suppress weed biomass

Cover crop effects on vines?

- Documentation of reduced vigor
- In many cases, no effect on petiole nutrition or yield – Merlot, Napa Co. – 3 yrs. Baumgartner et al., 2008
 - Chardonnay, Monterey Co. 5 yrs. Smith et al., 2008
 - Merlot, San Joaquin Co. 1 yr., unpublished data
- Yeast assimilable nitrogen content and free amino acids in juice – no effect
 - Cabernet sauvignon, Napa Co. 2 yrs.

J. Lee and K. Steenwerth

Cover crop effects on vines?

- Water Stress no effect on vine leaf water potentials?
 Findings inconclusive
- Confounding factors: management of canopy and fertilizer, age of vineyard, scion and rootstock, and soil fertility

Hypothesis:

Cover crops enhance water infiltration despite water use via transpiration, potentially offsetting competition for water (Celette et al., 2005).

Cover crops as functional types?

- Build soil organic pools and soil microorganisms
- Enhance nitrogen retention
- Weed biomass reduction
- Shift weed and nematode composition
- Tool for water, nutrition and canopy management

Acknowledgements

- Larry Bettiga and Richard Smith, UCCE Monterey Co.
- Daryl Salm, Valley Farm Management
- Eli Carlisle, California Sustainable Winegrowing Alliance
- Dr. Jungmin Lee, Dr. Andrew McElrone, Shane Parker, Kelley Belina, and Joshua Hunt, USDA/ARS